Platelet endothelial cell adhesion molecule-1 serves as an inhibitory receptor that modulates platelet responses to collagen.
نویسندگان
چکیده
Platelet responses to collagen are mediated by the combined actions of the integrin alpha2beta1, which serves as a major collagen-binding receptor, and the GPVI/FcRgamma-chain complex, which transmits collagen-specific activation signals into the cell interior through the action of an immunoreceptor tyrosine-based activation motif within the cytoplasmic domain of the FcRgamma-chain. Despite much progress in identifying components of the signaling pathway responsible for collagen-induced platelet activation, virtually nothing is known about the regulatory elements that modulate this important hemostatic event. PECAM-1, a recently recognized member of the inhibitory receptor family, contains a functional immunoreceptor tyrosine-based inhibitory motif within its cytoplasmic domain that, when tyrosine phosphorylated, recruits and activates the protein-tyrosine phosphatase, SHP-2. To test the hypothesis that PECAM-1 functions to regulate GPVI/FcRgamma-chain-mediated platelet activation, the responses of wild-type versus PECAM-1-deficient murine platelets to GPVI-specific agonists were compared. Four distinct GPVI/FcRgamma-chain-dependent responses were found to be significantly exaggerated in platelets derived from PECAM-1-deficient mice, including Mg++-independent adhesion to immobilized fibrillar collagen, collagen-induced platelet aggregation, platelet aggregation induced by the GPVI-specific agonist collagen-related peptide, and GPVI/FcRgamma-chain-induced dense granule secretion. Together, these data provide compelling evidence that PECAM-1 modulates platelet responses to collagen, and they implicate this novel member of the inhibitory receptor family in the regulation of primary hemostasis.
منابع مشابه
Radiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells
Background: Radiation-induced molecular changes on the endothelial surface of brain arteriovenous malformations (AVM) may be used as markers for specific vascular targeting agents. In this study, we examined the level of expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) on brain endothelial cell surface after radiation treatment, with the aim of targeting the radiation-induc...
متن کاملInhibitory effect of Cinnamon on prevention of foam cell formation in platelet and monocytes co-culture
Introduction: Atherosclerosis is one of the leading causes of cardiovascular disease. Following endothelial damage and platelet aggregation in that area and the recruitment of monocytes and their conversion to macrophages, LDL gradually accumulates under the endothelial artery wall and gradually oxidized and convert to oxi-LDL. By swallowing it, the macrophages turn into foam cell and then athe...
متن کاملPlatelet endothelial cell adhesion molecule-1 is a negative regulator of platelet-collagen interactions.
The functional importance of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) in platelets is unclear. Because PECAM-1 represents a newly assigned immunoglobulin-ITIM superfamily member expressed on the surface of platelets, it was hypothesized that it may play an important regulatory role in modulating ITAM-bearing receptors such as collagen (GP)VI receptor and FcgammaRIIA. To exam...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Platelet endothelial cell adhesion molecule-1 is a negative regulator of platelet-collagen interactions
The functional importance of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) in platelets is unclear. Because PECAM-1 represents a newly assigned immunoglobulin–ITIM superfamily member expressed on the surface of platelets, it was hypothesized that it may play an important regulatory role in modulating ITAM-bearing receptors such as collagen (GP)VI receptor and FcgRIIA. To examine ...
متن کاملPlatelet endothelial cell adhesion molecule-1 regulates collagen-stimulated platelet function by modulating the association of phosphatidylinositol 3-kinase with Grb-2-associated binding protein-1 and linker for activation of T cells
BACKGROUND Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI-Fc receptor (FcR)γ-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 97 6 شماره
صفحات -
تاریخ انتشار 2001